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Abstract

This paper presents a free-surface correction (FSC) method for solving the 3-D shallow water equations. Under the

hydrostatic pressure assumption, the FSC method solves the governing equations for shallow water flows in two steps.

First, an intermediate free surface is obtained after the horizontal momentum equations are solved with the explicit

discretization of the pressure gradient terms. In the second step, the intermediate free surface is corrected by solving a

five-diagonal matrix system for the free-surface change (Dg) over the time step Dt. The final velocity field is then

corrected once the final free surface is obtained. The numerical scheme involves a semi-implicit discretization of the

barotropic terms in the momentum equations and the horizontal fluxes terms in the vertically integrated continuity

equation. Optinally, the FSC method is reduced to an explicit method for gravity waves, with the correction step

omitted. Using the FSC method, a semi-implicit, 3-D finite difference model for free-surface flows has been developed.

The model is mass conservative both locally and globally and is unconditionally stable with respect to gravity waves,

wind and bottom stresses, and vertical eddy viscosity terms. Because both steps are straightforward and can be easily

carried out, the FSC method presented here is an efficient method for simulating shallow water flows.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Sophisticated hydrodynamic models have been widely used for design, diagnostic, or predictive purposes

when dealing with complicated flow problems in a water body. For shallow water flows in lakes and es-

tuaries, the hydrostatic pressure assumption is generally valid in most cases. Situations where the hydro-

static pressure assumption may be questionable are discussed in several previous publications [8,10,23,24].
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With the hydrostatic assumption and the use of the Boussinesq approximation, governing equations for

free surface flows in shallow lakes and estuaries have the following forms:
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where q0 is the reference density; x, y, and z are Cartesian coordinates (x is from west to east, y is from south

to north, and z is vertical pointing upward); u, v, and w are velocities in the x-, y-, and, z-directions, re-
spectively; t, f , g, q, g, and p denote time, the Coriolis parameter, the gravitational acceleration, density, the

free surface elevation, and pressure, respectively; and Ah and Av represent horizontal and vertical eddy

viscosities, respectively.

Eq. (1) is the continuity equation and can be integrated over the water depth to get an equation for the

free surface
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where h0 is the bottom elevation and r is the net rain intensity (precipitation minus evaporation) in cm/s.

The above equation is obtained with the assumption that the flux through the bed is zero.
Free surface flows in shallow lakes and estuaries contain both fast propagating surface gravity waves and

slow moving internal gravity waves. Most existing 3-D models for free surface flows solve Eqs. (1)–(5)

utilizing a mode-splitting technique [1–5] in which the vertically integrated equations (external mode) are

separated from the 3-D momentum equations (internal mode). The external mode solves vertically inte-

grated equations explicitly with a small time step dictated by the Courant–Friedrichs–Levy (CFL) condi-

tion for the fast propagating gravity waves. According to this condition, stable solutions can only be

obtained when the ratio of horizontal spacing (Dx) over the time step (Dt) is not larger than the celerity of

the gravity wave if an explicit finite difference scheme is used. A grid Courant number (Cr) for gravity waves
can be defined as Cr ¼ cDt=Dx, where c is the celerity of the gravity wave (c ¼

ffiffiffiffiffiffi
gD

p
for shallow waters,

where D is the water depth). The CFL condition for gravity waves is equivalent to Cr6 1. For the internal

mode, a much larger time step is allowed because effects of fast propagating external mode have been

removed. The principal advantage of the mode-splitting technique is some savings in computing time,

because the vertically integrated, barotropic equations governing external modes are much simpler to solve.

The vertical structures of flows, on the other hand, are more expensive to solve and can be computed at

much larger time steps due to the slow propagation of internal gravity waves. The challenge of this method

is to ensure that the two calculations are consistent and synchronous with each other at each internal time
step, which is not necessarily guaranteed.

Recent developments in 3-D hydrodynamic models involved the use of a semi-implicit method [6], which

does not require the splitting of the external and internal modes. Following the similar procedure used by
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Casulli [7] for 2-D shallow water flows, the semi-implicit method used in Casulli and Cheng [6] discretizes

the barotropic pressure gradient terms in the horizontal momentum equations and the vertically integrated

continuity equation implicitly. At each time step, the free surface is first calculated by solving a five di-

agonal system for g, followed by the calculation of the velocity field. According to Casulli and Cheng [6],

Casulli and Stelling [8], and Casulli [9], this semi-implicit method is very efficient, because it allows the use

of a large time step, which does not depend on the fast propagating surface gravity wave.

This paper presents a free-surface correction (FSC) method that, similar to the semi-implicit method of

Casulli and Cheng [6], does not involve the mode-splitting procedure either, yet allows a very large time step
to be used in model runs. In this method, direct solutions to Eqs. (1)–(5) are carried out with two steps.

In the first step, an intermediate velocity field is solved using the free surface of the previous time step. An

intermediate free surface is then calculated from Eq. (5) using the intermediate velocity field. In the second

step, the intermediate free surface is corrected by solving a five-diagonal system, followed by a correction to

the intermediate velocity field. The FSC method is implemented in a Lake and Estuarine Simulation System

in Three Dimensions (LESS3D), a coupled simulation system of hydrodynamics, sediment transport

processes, and nutrient dynamics for lakes and estuaries. Besides the flow field, the hydrodynamic portion

of the model also solves salinity and temperature equations. Although the hydrostatic pressure assumption
is used in the following sections for the presentation of the FSC method, the model has a non-hydrostatic

module that allows fully hydrodynamic simulations of 3-D flows [10,23].
2. A FSC method for 3-D flows

The finite difference method is used to solve Eqs. (1)–(5) in a Cartesian grid system with a staggered grid

arrangement of model variables. Fig. 1 shows the horizontal and vertical views of the computational stencil
Fig. 1. A Cartesian grid system used in the LESS3D model with a staggered arrangement of model variables. The top-left graph is a

view looking north, while the top-right and bottom graphs are views looking west and downward, respectively.
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in Cartesian coordinates. In Fig. 1, Dx, Dy, and Df are grid spacings in x-, y-, and z-directions, respectively.
Lower case letters i, j, and k are grid indexes in the three directions. While Dx varies only with i, Dy varies

only with j. Df denotes the thickness of the horizontal layer, which is constant for the same k-index. To fit

the bottom topography and the free surface, Dz for the actual cell height is used in the computation. Except

for the bottom and top layers, Dz is the same as Df, the layer thickness. For the bottom layer, Dz is the

distance between the top of the bottom layer and the real bottom. Similarly, for the top layer, Dz is the

distance between the free surface and the bottom of the top layer. As a result, Dz is generally not the same as

Df for both the bottom and top layers. To ensure the vertical resolution near the free surface, the k-index
for the top layer is allowed to vary with horizontal location and time. This eliminates the use of a thick top

layer to cover the free-surface variation and allows the surface to travel from one layer to another. At each

time step, the k-index for the top layer (km) is calculated and saved. If the free surface at the n þ 1th time

step drops below the middle point of the top layer, the top cell is aggregated to the cell below it and km is

reduced by 1. On the other hand, if the free surface at the new time step is higher than the middle point of

Layer km þ 1, the top cell at the previous time step is split into two cells and the top one is the new top cell at

the new time step.

With a staggered arrangement of model variables, u and v are defined at the centers of the east and north
faces of the cell, respectively, while w is defined at the center of the top face. q, p, and concentrations are

defined at the center of the cell. The surface elevation (g) and water depth (D) are defined at the center of the

horizontal grid.

Substituting p in Eq. (4) into Eqs. (2) and (3) and using the Leibnitz integration law and the Boussinesq

approximation, Eqs. (2) and (3) can be written as
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where Hx and Hy include the convective terms and horizontal eddy viscosity terms
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Density in above equations is a function of temperature and salinity [26]. The governing continuity

equations for mass (1) and momentum (6) and (7) are supplemented with the following advection–diffusion
equation for concentrations:
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where Ss represents the sink/source terms; U can be temperature, salinity, suspended sediment concentra-
tions, or nutrient concentrations; and Bh and Bv are eddy diffusivities in the horizontal and vertical di-

rections, respectively. In the above transport equation, if the material simulated involves settling, w in the

advective term includes the settling velocity of the material.

In the first step of the FSC method, an intermediate velocity field is first calculated from Eqs. (6) and (7)

using the pressure field of the previous time step
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where Dt is the time step used in the computation, the superscript n represents the previous time step, while

the superscript n þ � represents intermediate solutions at the new time step. For simplicity, the i-, j-, and k-
indexes are omitted in the above finite difference equations.

In Eqs. (11) and (12), the vertical eddy viscosity terms are discretized implicitly, while the horizontal
gradients of the free surface, Hx, and Hy , and the baroclinic terms are treated explicitly. For the Coriolis

terms, the newest available velocity component is always used in the computation. For example, when unþ�

is first calculated from Eq. (11), vn is used; however, when vnþ� is calculated from Eq. (12), unþ� is used. To

avoid that the calculation of vnþ� always uses a newer u-velocity, Eqs. (11) and (12) are solved in an al-

ternate sequence in the computations: First Eq. (11) and then Eq. (12) at the odd time step, but reverse the

sequence at the even time step. When Eq. (12) is solved first, un is used in the Coriolis term of the v-
equation, but the newly available intermediate v-velocity (vnþ�) is used in the Coriolis term for the calcu-

lation of unþ�.
Boundary conditions in the horizontal directions are specified with either free surface elevations or

velocities for open boundaries. At solid boundary, normal velocity is set to zero, thereby implying ap-

propriate Neumann-type boundary conditions for pressure. Boundary conditions at the free surface and at

the bottom are implicitly specified by wind and bottom shear stresses, respectively:

Av

ounþ�

oz

� �
z¼g

¼ sgx

qg

; Av

ovnþ�

oz

� �
z¼g

¼ sgy

qg

; ð13Þ
Av

ounþ�

oz

� �
z¼h0

¼ Cdqunþ�
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
un2
b þ vn2

b

q
; Av

ovnþ�

oz

� �
z¼h0

¼ Cdqvnþ�
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
un2
b þ vn2

b

q
; ð14Þ

where sgx and sgy denote wind shear stresses in x- and y-directions, respectively; ub and vb are velocities of

the bottom cell in x- and y-directions, respectively; and Cd is the bottom frictional coefficient which can be

estimated by assuming a log-layer distribution of velocity for fully developed turbulence

Cd ¼
j

lnðzb=z0Þ

� �2
; ð15Þ

where j is the von Karman constant (0.41), zb is the z-coordinate of the center of the bottom cell, z0 ¼ ks/30
and ks is the bottom roughness. Note that external fluxes at the bottom and at the free surface are included

in the calculation of the free-surface location using Eq. (5).
Because of the explicit treatment of the horizontal gradients of the free surface in the calculations of the

intermediate velocities, Eqs. (11) and (12) are two tri-diagonal matrix systems and can be efficiently solved

using the Thomas Algorithm. It is easy to generate the tri-diagonal matrix systems from Eqs. (11) and (12)

because only the vertical eddy viscosity terms and the bottom shear stresses are implicit. Once unþ� and vnþ�

are solved, the intermediate vertical velocity and the intermediate free surface can be computed using Eqs.

(1) and (5), respectively, with the following finite difference forms:
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where an
i;j;kþ1=2 is the area of the top face of the cell with the indexes i, j, and k at the previous time step, as

i;j is

the wet surface area of the horizontal grid with the indexes i and j at the previous time step, F nþ�
i�1=2;j;k; F

nþ�
i;j�1=2;k

and F nþ�
i;j;k�1=2 are fluxes of water flowing into cell (i, j, k) through the west, south, and bottom faces, re-

spectively, Dg�
i;j ð¼ gnþ�

i;j � gn
i;jÞ is the increment of the free surface estimated from the intermediate velocity

field, or the difference between the intermediate free surface and the free surface at the previous time step, h
is an implicitness parameter varying between 0 and 1, and U and V are vertically integrated fluxes:
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where an
iþ1=2;j;k and an

i;jþ1=2;k are areas of the east and north faces, respectively, of the cell with the indexes i, j,
and k at the previous time step, kun and kum are, respectively, the bottom and top k-indexes at the u-point,
and kvn and kvm are the bottom and top k-indexes at the v-point.

If we change the superscript n þ � to n þ 1, then the computation continues to the next time step (time

step n þ 2). However, the time step (Dt) will be restricted by the celerity of the gravity wave due to the

explicit treatment of the free-surface gradient terms in the momentum equations. This is not desirable. To

eliminate this time step restriction caused by the explicit treatment of the barotropic terms, the second step

of the FSC method is introduced.

Let us change the horizontal gradients of the free surface in Eqs. (11) and (12) from explicit to semi-
implicit and change the superscript n þ � to n þ 1 except for the Coriolis term. We have:
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where unþ1 and vnþ1 are final velocities at the new time step.

Subtracting Eqs. (11) and (12) from Eqs. (19) and (20), respectively, we have:
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where Dgð¼ gnþ1 � gnÞ is the final increment of the free surface over the time step Dt, du ¼ unþ1 � unþ� and

dv ¼ vnþ1 � vnþ�. Therefore, Eqs. (21) and (22) are equations for velocity corrections du and dv. Integrating
both equations over the water column, we have:
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where An
iþ1;j and An

i;jþ1=2 are total areas of the east and north faces of the water column for a horizontal grid
with the indexes i and j at the nth time step. Note that the same boundary conditions specified in Eqs. (13)

and (14) have been used for the final velocity field, therefore:
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The final free-surface increment over the time step (Dt) is found from the following discrete form of Eq. (5):

Dgi;j ¼ gnþ1
i;j � gn

i;j ¼ �Dtð1� hÞ
as

i;j
½Un

iþ1=2;j � Un
i�1=2;j þ V n

i;jþ1=2 � V n
i;j�1=2	

� Dth
as

i;j
½Unþ1

iþ1=2;j � Unþ1
i�1=2;j þ V nþ1

i;jþ1=2 � V nþ1
i;j�1=2	 þ Dtrnþ1=2: ð27Þ

Note that the above equation is similar to Eq. (17). Inserting Eqs. (23) and (24) into Eq. (27) and then

combining with Eq. (17), one obtains
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Eq. (28) can be seen as an equation for the correction of the free surface because its right-hand side is the

difference between the final and intermediate free surfaces. This is the source of the name free-surface

correction (FSC) method. Eq. (28) can be rewritten in the following form:
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To solve Eq. (29), boundary conditions for Dg need to be specified. Depending on the boundary type and

data used for the open boundaries, the boundary conditions can be either a Dirichlet-type or a Neumann-

type. If it is an open boundary grid where the water level is known, the Dirichlet-type boundary condition is
used: Dg ¼ gnþ1 � gn. If it is an open boundary where the flow rate is given or if it is a solid boundary, the

Neumann-type boundary condition is used with a zero gradient of Dg in the normal direction.
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Starting from the southwest corner of the computation domain and doing a 2-D loop (saying the i-loop
is the internal loop), Eq. (29) can be written for each cell, forming a five-diagonal matrix system with a

known right-hand side after the first step is done. To save space, the five diagonals can be saved in five 1-D

arrays using an index l ¼ ðj � 1ÞNx þ i, where Nx is the total number of grids in the x-direction. As can be

seen from Eq. (30), Rw; Re; Rs, and Rn are all positive. If a uniform grid system is used, then Re
i;j ¼ Rw

iþ1;j and

Rn
i;j ¼ Rs

i;jþ1, or the five-diagonal system is symmetric. In this case, the five-diagonal matrix system is positive

definite. The most efficient way to solve this kind of matrix system is the conjugate gradient method. For

faster convergence, incomplete Cholesky preconditioning [11] can be used in the conjugate gradient
method. If a non-uniform grid system is used, then the five-diagonal system is generally non-symmetric.

One can use the bi-conjugate gradient stabilized (Bi-CGSTAB) method [12] that provides relatively uniform

convergence for non-symmetric matrices. The solution of (29) gives the final free surface location. The final

velocity field can then be calculated by solving Eqs. (21) and (22) and the continuity equation. Eqs. (21) and

(22) are tri-diagonal systems which are easy to solve. In a real computation, however, there is actually no

need to solve the tri-diagonal systems of Eqs. (21) and (22). Note that the vertical eddy viscosity terms in

Eqs. (21) and (22) disappear in Eqs. (23) and (24). This is because the vertical integration of Eqs. (21) and

(22) cancels the shear stresses between the horizontal layers and the boundary conditions at the free surface
and the bottom are the same for both the final and intermediate velocities. Therefore, the eddy viscosity

terms in Eqs. (21) and (22) have no effect on the derivation of Eqs. (28) and (29). Clearly, du and dv in the

following expressions satisfy Eqs. (21) and (22) with the boundary conditions oðduÞ=oz ¼ oðdvÞ=oz ¼ 0 at

the free surface and the bottom:

du ¼ �Dtgh
oDg
ox

; ð31Þ
dv ¼ �Dtgh
oDg
oy

: ð32Þ

Because the right-hand sides of Eqs. (31) and (32) do not depend on z, neither du nor dv are a function of z-

coordinate. The final velocity distribution in the vertical direction is simply shifted from its intermediate one
with a displacement, which is negatively proportional to the horizontal gradient of free surface change over

the time step Dt. It should be mentioned that because du and dv expressed in Eqs. (31) and (32) are invariant

of the z-coordinate, they always satisfy Eqs. (21) and (22) no matter what kind of model is used for the

vertical eddy viscosity (Av), simply because oðduÞ=oz ¼ oðdvÞ=oz 
 0 for the entire water column. The model

provides several options for the estimation of the vertical eddy viscosity, including a simplified second-order

closure model and a turbulent kinetic energy [13] that is similar to that of Sheng and Villaret [14].

After the flow field is solved, the model uses the following flux-based finite difference scheme to solve the

transport equation expressed in Eq. (10):

Unþ1
i;j;k � Un

i;j;k

Dt
¼ Ss þ

1

-V n
i;j;k

DF n
x

"
þ DF n

y þ DF n
z þ Df n

x þ Df n
y þ an

i;j;kþ1=2B
n
vi;j;kþ1=2

Unþ1
i;j;kþ1 � Unþ1

i;j;k

Dznkþ1=2

� an
i;j;k�1=2B

n
vi;j;k�1=2

Unþ1
i;j;k � Unþ1

i;j;k�1

Dznk�1=2

#
; ð33Þ

where -V n
i;j;k is the water volume of the cell (varies with time for the top cell), DF n

x ; DF n
y , and DF n

z represent

explicit discretizations of net advective fluxes of the material flowing into cell (i, j, k) in the x-, y-, and z-
directions, respectively, and Df n

x and Df n
y are net diffusive fluxes of the concentration entering the cell from

the x- and y-directions, respectively. Eq. (33) is a tri-diagonal system and can be easily solved by the
Thomas Algorithm.
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3. Implementation of the FSC method

It should be pointed out that there is no need to calculate the intermediate vertical velocity (wnþ�),

because it is not involved in the calculations in the second step. Also, the use of the Leibnitz integration law

to separate pressure gradients into baroclinic and barotropic components in the last section is just for the

purpose of explaining the FSC method. In real computation, due to the explicit treatment of the baroclinic

term, it is not needed to separate the two pressure components, and the following equations are solved to

obtain the intermediate velocities:

unþ� � un

Dt
¼ fvn � 1

q0

opn

ox
þ Hn

x þ o

oz
Av

ounþ�

oz

� �
; ð34Þ
vnþ� � vn

Dt
¼ �funþ� � 1

q0

opn

oy
þ Hn

y þ o

oz
Av

ovnþ�

oz

� �
: ð35Þ

Furthermore, when the FSC method was coded in the model, volume-averaged values are used for the

pressure gradient terms:

opn

ox
¼ 1

-V n
iþ1=2;j;k

Z Z Z
-V n

iþ1=2;j;k

opn

ox
d-V ; ð36Þ
opn

oy
¼ 1

-V n
i;jþ1=2;k

Z Z Z
-V n

i;jþ1=2;k

opn

oy
d-V ; ð37Þ

where -V n
iþ1=2;j;k is the volume of the east half of cell (i, j, k) plus the volume of the west half of cell (i þ 1,

j, k), and -V n
i;jþ1=2;k is the volume of the north half of cell (i, j, k) plus the volume of the south half of cell

(i, j þ 1, k). Hn
x and Hn

y in Eqs. (34) and (35), on the other hand, take the following forms:

Hn
x ¼ 1� a

-V n
i;j;k

ðIni;j;k þ XXn
iþ1=2;j;k � XXn

i�1=2;j;k þ YX n
i;jþ1=2;k � YX n

i;j�1=2;kÞ

þ a
-V n

iþ1;j;k

ðIniþ1;j;k þ XXn
iþ3=2;j;k � XXn

iþ1=2;j;k þ YX n
iþ1;jþ1=2;k � YX n

iþ1;j�1=2;kÞ; ð38Þ
Hn
y ¼ 1� b

-V n
i;j;k

ðJn
i;j;k þ XY n

iþ1=2;j;k � XY n
i�1=2;j;k þ YY n

i;jþ1=2;k � YY n
i;j�1=2;kÞ

þ b
-V n

i;jþ1;k

ðJn
i;jþ1;k þ XY n

iþ1=2;jþ1;k � XY n
i�1=2;jþ1;k þ YY n

i;jþ3=2;k � YY n
i;jþ1=2;kÞ; ð39Þ

where a ¼ 0:5Dxi=ðDxi þ Dxiþ1), b ¼ 0:5Dyi=ðDyj þ Dyjþ1Þ, Ini;j;k and Jn
i;j;k are, respectively, the net u-mo-

mentum flux and v-momentum flux entering cell (i, j, k) from three directions, XXn
iþ1=2;j;k and XY n

iþ1=2;j;k are

integrations of Ahou=ox and Ahov=ox, respectively, over the east face of cell (i, j, k), while YY n
i;jþ1=2;k and

YX n
i;jþ1=2;k are integrations of Ahov=oy and Ah ou=oy, respectively, over the north face of the cell.

The FSC method described above can be conveniently implemented in 3-D hydrodynamic models for

free-surface flows. The implementation of the two steps is summaried below. The first step includes the

following sub-steps:

1. Calculate hydrostatic pressure using Eq. (4) and free surface at the previous time step.
2. Calculate horizontal pressure gradients.
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3. Calculate Ah and Av using proper turbulence models.

4. Calculate Hx and Hy using Eqs. (38) and (39).

5. Solve Eqs. (34) and (35) with the Thomas Algorithm to get intermediate horizontal velocities (unþ� and

vnþ�).
6. Calculate the intermediate free surface (or Dg�

i;j) using Eq. (17).

In the second step, the following sub-steps are carried out:

1. Calculate Rw; Re; Rs, and Rn using Eq. (30) to form a five-diagonal matrix system.

2. Solve Eq. (29) to get the final free surface using the conjugate gradient method with incomplete Chole-

sky preconditioning or the bi-conjugate gradient stabilized (Bi-CGSTAB) method.

3. Calculate horizontal gradients of the final free-surface increment in the x- and y-directions.
4. Calculate velocity corrections using Eqs. (31) and (32) and get the final horizontal velocities.

5. Calculate final vertical velocity using the continuity equation similar to Eq. (16) (replace n þ � with
n þ 1 in the equation).

All sub-steps in the above two time steps can be performed straightforwardly, except for sub-step (2) of

the second step that is somewhat time-consuming because a five-diagonal system has to be solved. Com-

paring to the semi-implicit method in Casulli and Cheng [6] and Casulli and Stelling [8] and the implicit

method in Namin et al. [24], the formation of the five-diagonal matrix in the FSC method is much simpler.

The FSC method decouples the implicit treatment of the vertical eddy viscosity terms from the semi-implicit

treatment of the barotropic terms. As a result, the calculation of the free-surface location in the FSC

method is simpler than that in [6,8]. Unlike the semi-implicit method in [6,8] or the implicit method in [24],
there is no matrix calculation involved in computing the coefficients of the five-diagonal system of Eq. (29).

Therefore, the formation of the five-diagonal matrix in the FSC method is quite simple. Although an extra

step is needed to correct the intermediate velocity field, such a correction can be easily done using Eqs. (31)

and (32).
4. Properties of the FSC method

Because the five-diagonal matrix system for the free-surface change over Dt is derived from the vertically

integrated continuity equation, the method is mass conservative both locally and globally. Although the

explicit discretization of barotrpic terms in the first step only allows a very small time step restricted by the

celerity of the external gravity wave, the correction of the free surface eliminates this time step restriction.
Following the same procedure described in Abbott and Basco [15], a stability analysis can be done and

shows that when h P 0:5, the FSC method is unconditionally stable with respect to the external gravity

wave. The numerical scheme is also unconditionally stable with respect to bottom stresses and vertical eddy

viscosity terms because of the implicit treatment of these terms. The explicit treatment of the horizontal

eddy viscosity terms requires that the time step not to exceed Dx2 Dy2/(2Ah)/(Dx2 +Dy2), while the stability

condition for the Coriolis terms is Dt6 1=f . In lake and estuarine simulations, these two constraints are

relatively mild as compared to the time step restriction imposed by the explicit treatment of the convective

terms that requires the time step not to exceed (jumaxj=Dx þ jvmaxj=DyÞ�1
. For stratified flows, the explicit

treatment of the baroclinic terms leads to a time step constraint that is controlled by the propagation speed

of an internal wave (cb ¼
ffiffiffiffiffiffiffiffi
g0D

p
, where g0 is the reduced gravity due to stratification and D is the water

depth), or Dt6Dx=cb. For the advection–diffusion equation, the explicit advection terms also impose a time

step limit of (jumaxj=Dx þ jvmaxj=DyÞ�1
. The time step constraint due to the explicit discretization of the

horizontal diffusion terms is Dt6Dx2Dy2=ð2BhÞ=ðDx2 þ Dy2).
It should be pointed out that although the FSC method is unconditionally stable with respect to the

gravitational wave when h is greater than 0.5, it is dissipative for h > 0:5. The highest dissipation occurs

when h ¼ 1. To obtain model results that are non-dissipative, one has to use a h value of 0.5 [16].
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It can be seen that when h ¼ 0, Eq. (29) is reduced to Dgi;j ¼ Dg�
i;j and there is no need to solve Eq. (29)

because the final free-surface elevation (gnþ1
i;j ) is the same as the intermediate free surface elevation (gnþ�

i;j ). As

a result, the velocity corrections (du; dv) are zero and there is actually no need to carry out the second step

of the FSC method at all. However, when h¼ 0, the model is unstable if gnþ�
i;j is calculated from Eq. (17),

because both the horizontal gradients of the free surface in the momentum equations and the horizontal

fluxes in the vertically integrated continuity equation are discretized explicitly and a negative numerical

diffusion is involved [16]. Since the intermediate velocity field (unþ�; vnþ�) is already available before the

second step is carried out, the model uses (unþ�; vnþ�) instead of (un; vn) to calculate gnþ�
i;j if h ¼ 0. The re-

sulting numerical model is stable when Dt6Dx=
ffiffiffiffiffiffi
gD

p
. Therefore, when h ¼ 0, the model treats the hori-

zontal gradients of the free surface in the momentum equations explicitly, but uses the newest velocity field

to calculate the fluxes in the vertically integrated continuity equation.

Time differencing in the FSC method is at least first-order accurate. The staggered arrangement of model

variables (Fig. 1) allows pressure gradient terms and eddy viscosity terms to be easily discretized with the

central differencing scheme that has a second-order accuracy in space, or O(Dx2). The accuracy of the

convective terms depends on the finite difference scheme used in the simulation. The model provides several

choices for the explicit treatments of convective/advective terms, including the standard upwind differ-
encing, central differencing, combined upwind-central differencing, QUICK (Quadratic Upstream Inter-

polation for Convective Kinematics), QUICKEST (QUICK with Estimated Streaming Terms) [17], and a

flux limiting scheme using Roe�s superbee limiter [18], etc. The standard upwind scheme, for example, is

accurate only to the first order, while the QUCKEST scheme has a third-order accuracy, or O(Dx3).
5. Test of the FSC method

The FSC method was first validated with various idealized cases, including checking mass conservations

for simple and complex bathymetries. This section shows two of the test cases. A model application to a real

estuary is described in the next section.

In the first test case, two seiche oscillations in a rectangular basin with a constant depth (D) of 5 m were

simulated. The horizontal dimension of the basin is 120 m in the x-direction and 60 m in the y-direction. At

time¼ 0, the water has no velocity, but has a free surface setup in the following form:

g ¼ a cos
px
Lx

� �
cos

py
Ly

� �
; ð40Þ

where Lx ¼ 120 m, Ly ¼ 60, a is 2 cm for the first oscillation and 30 cm for the second oscillation. The

southwest corner of the basin is the origin for both the x- and y-coordinates and the center of the basin is at

x ¼ 60 m and y ¼ 30 m. For this kind of 3-D seiching problem, the linear wave theory gives the following

first-order analytical solutions:

g ¼ a cos
px
Lx

� �
cos

py
Ly

� �
cosðrtÞ;

ðu; vÞ ¼ agp
r

coshðkwzÞ
coshðkwDÞ

1

lx
sin

px
Lx

� �
cos

py
Ly

� �
;
1

ly
cos

px
Lx

� �
sin

py
Ly

� �� �
sinðrtÞ;

w ¼ � agk
r

sinhðkwzÞ
coshðkwDÞ

cos
px
Lx

� �
cos

py
Ly

� �
sinðrtÞ;

ð41Þ

where r ¼ kw
ffiffiffiffiffiffi
gD

p
, kw ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L�2

x þ L�2
y

q
, and the origin of the z-coordinate is at the bottom of the basin.
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Both seiche oscillations were simulated with a total of 36,864 grid cells (62, 32, and 18 cells in the x-, y-,
and z-directions, respectively). While a uniform grid spacing of 0.3 m is used in the z-direction, Dx and Dy
vary between 0.2 and 2 m in the horizontal directions. In both seiche simulations, eddy viscosities in three

directions were set to zero. Both the bottom friction and wind shear stress were assumed to be zero. The

QUICKEST scheme for convective terms was chosen in model runs with a time step of 0.25 s.

Figs. 2 and 3 show comparisons of model results (solid lines) with analytical solutions (dashed lines)

expressed in Eq. (41) for the first and second seiche oscillations, respectively. While Fig. 2 compares model

results with analytical solutions for the first oscillation case with the amplitude of 2 cm, Fig. 3 are com-
parisons for the second oscillation case with the amplitude of 30 cm. In Figs. 2 and 3, surface elevations are

plotted in top graphs 2(a) and 3(a), while u-, v-, and w-velocities are plotted in 2(b) and 3(b), 2(c) and 3(c),

and 2(d) and 3(d), respectively. Thick lines are results for a location near a corner of the basin with the

horizontal coordinates of (x, y)¼ (0.25 m, 0.25 m), while thin lines are those near the center of the basin

with the coordinates of (x, y)¼ (65.5 m, 35.5 m). In Figs. 2 and 3, all velocities are compared at a level that

is 3.15 m above the bottom, or z¼ 3.15 m.

FromFig. 2, it can be seen that simulated surface elevations and u-, v-, andw-velocities agree very well with
the first-order analytical solutions for the first seiche oscillation, which has a small amplitude and very weakly
nonlinear terms. For the second seiche oscillation, Fig. 3 shows that model results at the two locations deviate

from the first-order analytical solutions as time goes on. The reason for this deviation is that the linear wave

theory is only valid for small amplitudewaves because the nonlinear terms (convection terms) are negligible for

small amplitude waves. For a finite amplitude wave such as the second seiche oscillation, the nonlinear terms

cannot be neglected and the solutions given in Eq. (41) are not valid anymore. As can be seen from Fig. 3,

higher mode oscillations are generated by the nonlinear terms as time goes on.

The second idealized test case is the development of a 3-D eddy caused by a combination of the Coriolis

force and the baroclince force. Griffiths and Linden [19] conducted a laboratory experiment, in which a
bottomless cylinder of less dense water is placed at the middle of a rotating tank containing dense water. At

t ¼ 0, the cylinder was removed. They found that the less dense water initially rises and spreads rapidly

outwards in the upper layer. While the water in the upper layer flows outwards, the water in the lower layer

flows inwards. Under the Colioris effect, an anticyclonical flow pattern in the upper layer and a cyclonical

flow pattern in the lower layer were observed. James [20] and Tartinville et al. [21] conducted numerical

experiments similar to the laboratory experiment conducted by Griffiths and Linden, but for an idealized

square basin that is 20 m deep and 30 km wide. Although a much larger horizontal length scale was used,

James [20] and Tartinville et al. [21] were able to simulate the 3-D flow pattern found by Griffiths and
Linden in the laboratory. To test the FSC method this study used a square basin with a width of 45.5 km

and a constant depth of 20 m. The setup of the model test was the same as that in Tartinville et al. [21].

Again, there was no wind acting on the free surface and the bottom friction and eddy viscosities were set to

zero. The QUICKEST scheme was used for convective and advective terms. The model was run from the

cold start with the following initial salinity distribution:

U ¼ 33:75þ 1:1 R
3

� �8
; R6 3 km and 10 m < z6 20 m;

34:85; elsewhere;

�
ð42Þ

where R is the distance measured from the center (looking from above) of the basin and z is the distance

from the bottom. Assuming that the latitude is 30� N, the Coriolis parameter is f ¼ 7:29212 10�5 s�1.
The vertical spacing used for the simulation was 1 m, while the horizontal grid size varied from 0.5 (near

the center) to 2 km (near the sidewall). The model was run for 96 h with a time step of 150 s. Fig. 4 shows

velocity and salinity distributions at the top (19.5 m above the bed) and bottom (0.5 m above the bed) layers

at t ¼ 1, 5, 48, and 96 h. Side (x–z) views of velocity fields and salinity distributions along a transect parallel

to the x-axis through the center of the basin are shown in Fig. 5. For clarity, the four graphs in Fig. 4 only

shows results within the range of 15 km< x< 30.5 km and 15 km< y < 30.5 km, while Fig. 5 only shows



Fig. 2. Comparisons of simulated surface elevations, u-, v-, and w-velocities with the first-order analytical solutions according to the

linear wave theory for the first 3-D seiche case in a rectangular basin with a constant depth of 5 m. The amplitude is 2 cm. Thick lines

are comparisons at a location near a corner of the basin, while thin lines are near the center of the basin.
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results within the range of 12 km < x < 33:5 km. Comparing Figs. 4 and 5 with what were found in the

laboratory experiment [19] and previous numerical simulations [20,21], model results using the FSC method

are consistent with previous studies. During the first couple of hours, an upwelling near the center of the



Fig. 3. Comparisons of simulated surface elevations, u-, v-, and w-velocities with the first-order analytical solutions according to the

linear wave theory for the first 3-D seiche case in a rectangular basin with a constant depth of 5 m. The amplitude is 30 cm. Thick lines

are comparisons at a location near a corner of the basin, while thin lines are near the center of the basin.

570 X. Chen / Journal of Computational Physics 189 (2003) 557–578
basin can be seen in Fig. 5, along with a rapid outward spread of less dense water in the upper layer and an

inward flow pattern in the lower layer. Under the Coriolis influence, the outward flow forms a clockwise

eddy rotating anticyclonically in the top layer, while the inward flow becomes a counterclockwise eddy



Fig. 4. Three-dimensional views of simulated velocity fields and salinity contours at the top and bottom layers at t ¼ 1 h (a), 5 h (b),

48 h (c), and 96 h (d) during the development of an eddy.
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rotating cyclonically in the bottom layer. Although not showing in Figs. 4 and 5, simulated eddies using the

FSC method oscillate with a frequency that is proportional to f . This is also consistent with the laboratory

observations by Griffiths and Linden [19].
6. Application to a real estuary

The FSC method presented here was applied to the estuarine portion of the Alafia River in southwest

Florida (Fig. 6). The river is narrow and meandering except for its most downstream 4 km where it is

wider and has a few islands. There are five USGS (United States Geological Survey) continuous recording

stations along the Alafia River. The USGS has been measuring data at the Alafia River at Gibsonton

station since early 1990s, but continuous data recordings at the other stations did not start until a few
years ago. The most complete data available for the model application were collected since May 1999,

except for the Alafia River near Gibsonton station where data collection began in early November 1999.

Surface elevation and salinity data were collected at 15-min intervals at four downstream stations shown

in Fig. 6. At the most upstream station (Alafia River at Lithia) located about 24 km upstream from the



Fig. 5. Simulated velocity fields and salinity distributions along a transect parallel to the x-axis and through the center of the basin at

t ¼ 1 h (a), 5 h (b), 48 h (c), and 96 h (d) during the development of an eddy.
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mouth, only flow was measured, because no tidal signal is detected there. Normally, tide can be observed

at about 18 km upstream from the mouth, although saline water is usually limited only to the downstream

12 km.
Due to the physical configuration of the river, hydrodynamics in the river was first simulated with a

laterally averaged 2-D model using the FSC method [22] for the entire reach of 24 km from the mouth

(Alafia River at Gibsonton) to Alafia River at Lithia. The 3-D FSC scheme presented here was used for the

most downstream 4.5 km of the river, from the mouth to about 850 m downstream from Highway 301 (Fig.

6). Measured surface elevation, velocity, and salinity at four locations shown in Fig. 6 were used for the

boundary conditions and for calibrations/verifications of the 2-D and 3-D models. While the downstream

boundary conditions for 3-D runs are the same as those for the 2-D runs, the upstream boundary con-

ditions used in 3-D runs are simulated 2-D model results.
Although the computational domain for the 3-D simulation is just 4.5 km long, flow in this river

segment is quite nonlinear because of the presence of islands and some shallow areas where the wetting/

drying process occurs during the tidal cycle. The model handles the wetting and drying by updating and

bookkeeping actual water volumes and side and top areas of each top cells at each time step. If the water

volume is zero for a water column with the horizontal grid indexes of (i, j), then grid (i; j) is a dry grid.



Fig. 6. Alafia River flows to Tampa Bay in southwest Florida. There are five USGS continuous recording stations along the river.
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Otherwise, it is a wet grid. Nevertheless, when the computation marches from one time step to the next

time step, a wet grid is not necessarily a computation grid. In other words, it may not be included in the
computation during that time stepping process. The criterion for the model to determine if a wet grid is a

computation grid or not at each time step is that the water level at the center of the grid should be higher

or equal to the middle point of knth layer, where kn is the k-index of the bottom layer for the horizontal

grid (i, j). For a wet horizontal grid that is not included in the computation, its surface elevation and

concentrations are estimated using the averaged values of its neighboring computation grids that are

directly connected to it:

�gg ¼ 1

Nn

XNn

l¼1

gnþ1
l ; �UU ¼ 1

Nn

XNn

l¼1

Unþ1
l ; ð43Þ

where �gg and �UU are averages of surface elevations and concentrations of the neighboring computation grids,

which are labeled with the subscript l, and Nn is the total number of the neighboring computation grids. To

ensure mass conservations, final results of all grids involved need to be corrected:

gnþ1
l ( gnþ1

l � dg�; Unþ1
l ( Unþ1

l � dU�;

gnþ1
0 ( �gg � dg�; Unþ1

0 ( �UU � dU�;
ð44Þ

where the symbol( means replacing the left-hand side with the right-hand side, the subscript 0 denotes the
wet grid that is not computed and needs to be estimated, dg� and dU� are corrections and take the following

forms:

dg� ¼
ð�gg � gn

i;jÞan
0

at
; dU ¼ ½-V n

0 þ ðgnþ1
0 � gn

0Þan
0	Unþ1

0 � -V n
0U

n
0

-V t
; ð45Þ

where an
0 and -V n

0 are, respectively, the surface water area (the actual wet surface area) and water volume of

the wet grid whose surface elevation and concentrations need to be estimated, at and -V t are sums of water
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surface areas (actual wet surface areas) and water volumes of all grids involved in the estimation, including

the neighboring computation grids and the wet grid whose surface elevation and concentrations need to be

estimated.
The computational domain of the Lower Alafia River was discretized with a horizontal mesh of

Dx ¼ 100 m and Dy ¼ 60 m and a vertical spacing Df varying between 0.3 and 0.5 m. Numbers of grids in

the x-, y-, and z -directions are 45, 18, and 12, respectively, resulting in a total of 9720 grid cells. The length

of the simulation was a 320-day period from May 10, 1999 to March 24, 2000. The time step used for the 3-

D model runs was Dt ¼ 150 s. The model was run on a Pentium III single CPU of 933 MHz. The 320-day
simulation of hydrodynamics and salt transport processes took about 213 min of CPU time to complete.

Fig. 7 shows comparisons of simulated surface elevation and salinity with measured data at the USGS

Alafia River near Gibsonton station, where the salinity was measured at a depth of about 30 cm above the

bed. For simplicity, only results during the last 20 days of the simulation are shown in the figure. As can be

seen from Fig. 7, the FSC scheme presented here yielded reasonably good model results that agree well with

measured field data.

Figs. 8 and 9 are 3-D plots of velocity fields and salinity distributions at time¼ 7538.0 and 7548.0 h,

respectively. The former is at a high water level during the ebb tide, while the latter is at a lower water level
during the flood tide. Grey scales in Figs. 8 and 9 represent different salinity ranges shown in the legend.

Closed areas inside the river are three small islands that are partially submerged when the water level is high
Fig. 7. Comparison of simulated and measured surface elevations (a) and salinities (b) during a 20-day period in the lower portion of

the Alafia River, southwest Florida.



Fig. 8. Simulated velocity and salinity distributions in the Lower Alafia River at time¼ 7538.0 h when the water level is high during the

ebb tide.
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and emerged when the water level is low. A comparison of shorelines in Figs. 8 and 9 indicates that the

wetting/drying process is well handled by the model. Because of a low water level, emerged areas of the

islands in Fig. 9 are larger than those in Fig. 8. Near the south bank at about 1 km from the downstream

boundary, a shallow area is submerged in Fig. 8, but exposed to the air in Fig. 9. Both Figs. 8 and 9 show
that flow fields and salinity distributions in the lower portion of the Alafia River pattern are 3-D due to the

existence of islands and some shallow areas.

The averaged water depth in the lower portion of the river is about 2 m, with the deepest area being

just 3.25 m deep. The celerity of the gravitational wave estimated from the depth data varies around 5 m/s.

With a horizontal grid size of 60 m in the y-direction, the time step used in the simulation would be,

according to the CFL condition for gravity waves, restricted to 12 s or shorter if the explicit discretization

were used in the model and the second step of the FSC method were not performed. Nevertheless, the

free-surface correction step in the FSC method eliminates such time step restriction. As a result, a much
larger time step, which is more than one order of magnitude longer, is allowed in model runs without any

problems.



Fig. 9. Simulated velocity and salinity distributions in the Lower Alafia River at time¼ 7548.0 h when the water level is low during the

flood tide.
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7. Conclusions

The FSC method presented here contains two steps in solving the governing equations for shallow water

flows. In the first step, an intermediate velocity field is solved with the explicit discretization of the hori-

zontal pressure gradient terms. An intermediate free surface is then obtained based on the intermediate

velocity field. This intermediate free surface is corrected by solving a five-diagonal system for the free

surface change (Dg) over the time step Dt in the second step, before the final velocity field is solved. Unlike

the semi-implicit method in [6,8] or the implicit method in [24], the formation of the five-diagonal matrix

does not involve any matrix calculations, and is thus much easier to accomplish.

Similar to the semi-implicit method of Casulli and Cheng [6], the FSC method presented here does not
involve the mode-splitting technique used by many 3-D hydrodynamic models for free-surface flows.

Therefore, it does not have any consistency and synchronization problems associated with the mode-

splitting technique. It is unconditionally stable with respect to gravitational waves, wind and bottom

stresses, and vertical eddy viscosity terms.
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The FSC method has been validated with various idealized test cases, before it was tested using field data

collected in an estuary in Southwest Florida. Model simulations show that the FSC method works well for

3-D free-surface flows. Because of the simplicity of the method and the allowance of a larger simulation

time step, the FSC method is an efficient method for modeling hydrodynamics of free-surface flows. When

h ¼ 0, there is no need to carry out the second step of the FSC method. In this case, the model uses the

newest velocity field to calculate the fluxes in the vertically integrated continuity equation, resulting in an

explicit 3-D model similar to that in [25]. Conversely, the FSC presented here can be easily added to existing

numerical models that treat gravity waves explicitly.
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